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Abstract

Single crystal superallcys were first identi-
fied as potentially useful engineering materials
for aircraft gas turbine engines in the mid-1960's.
Although they were not introduced into service as
turbine blades in commercial aircraft engines
until the early 1980's, they have subsequently
accumulated tens of millions flight of hours in
revenue producing service.

E-3556

The space shuttle main engine (SSME) and
potential advanced earth-to-orbit propulsion sys-
tems impose severe conditions on turbopump turbine
blades which for some potential failure modes are
more severe than in aircraft gas turbines. This
paper will discuss research activities which are
directed at evaluating the potential for single
crystal superailoys for application as turbopump
turbine blades in the SSME and advanced rocket
engines.

Introduction

In the 1960's, Pratt and Whitney Aircraft
pioneered the application of directionally solidi-
fied polycrystalline, nickel-base superalloys as
turbine airfoils in aircraft propulsion systems.

A natural extension of that technology was direc-
tionally solidified single crystal castings, which
Pratt and Whitney Aircraft introduced into the
engines which currently powers some commercial
aircraft. Such a single crystal turbine blade
for a Pratt and Whitney PW2037 turbofan engine is
shown in Fig. 1. Single crystal turbine blades
have now accumulated tens of millions of hours of
service in both civilian and military aircraft.

The operating conditions for some turbines in
advanced rocket engines are in some respects more
severe than for aircraft turbine engines. Single
crystal airfoils are now being evaluated for some
applications in the space shuttle main engine (SSME)
and similar propulsion systems. This paper will
review selected materials requirements for rocket
engine turbine airfoils with particular emphasis
on the suitability of single crystal nickel-base
superalloys.

Background

The Space Shuttle uses three SSME's during
launch. The high pressure fuel and high pressure
oxidizer pumps are both driven by combustion tur-
bines which operate under conditions which differ
from air breathing aircraft turbines. The operat-
ing conditions for advanced rocket engine high
pressure turbopump turbines and aircraft turbines
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are compared in Table 1. Of particular signifi-
cance is the fact that rocket turbines may operate
in a hydrogen or hydrogen combustion environment
at high pressure. This results in very high heat
transfer coefficients and resultant severe temper-
ature transients both in the gas stream and metal
parts. Figure 2 is a schematic diagram comparing
the materials operating realm for SSME and air-
craft turbine airfoil materials. Note that the
more severe thermal transients in the rocket
engine turbines cause a greater strain range than
is experienced in aircraft turbines. While the
goal life of 7.5 hr (55 launches) appears to be
modest for the SSME, the severe low and high cycle
fatigue conditions imposed on the turbine blades
in a hydrogen environment have so far prevented
achievement of the design 1ife goal.

A study was performed by Rocketdyne to assess
the relative merits of several classes of mater-
ials to lengthen the service 1ife of the turbine
b]adei for an advanced rocket engines like the
SSME.* The materials considered are shown in
Table 2. The study concluded that advanced single
crystal superalloys warrant development for tur-
bines operating at 870 °C. A useful advanced
single crystal alloy would be one which would be
resistant to property degradation in high pressure
hydrogen and have fatigue properties superior to
those single crystal alloys currently developed
for aircraft propulsion.

Single Crystal Superalloys

Mechanical Behavior

Single crystal superalloys offer improved
stress rupture life, low and high cycle fatique
1ife compared to directionally solidified (DS)
polycrystalline superalloys. Figure 3 compares
those three mechanical properties for NASAIR 100
single crystals and DS MAR-M 247,2 the DS alloy
from which NASAIR 100 was derived by eliminating
carbon, cobalt and boron. Thermal shock testing
of single crystal airfoil shapes in a rig which
simulates SSME transients demonstrated greater
than 70 pgrcent life improvement over MAR-M 246+Hf
airfoils.” While the single crystal superalloys
offer improvement over DS alloys which are cur-
rently bill of materials in the SSME, still fur-
ther improvements appear t? be achievable by the
use of advanced processes.” These will be dis-
cussed later.

Mechanical properties of single crystal super-
alloys are highly anisotropic. The data compar-
ison in Fig., 3 is for crystals all oriented with
an edge of the cubic crystal parallel to the
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applied load. Young's modulus at room temperature
varies from about 124 GPa for the cube edge direc-
tion, <100> to about 290 GPa for the cube body
diagonal direction, <111>. Similarly yield
strength, ultimate strength and other mechanical
properties are dependent on the crystallographic
orientation of the sample or blade and must be
considered in the design. The effect of orient-
ation on the LCF life of a single crystal alloy

is shown in Fig. 4. It can be seen that when the
total strain range is constant, the greatest life
is for crystals having a <100> orientation and the
shortest 1ife is for crystals having a <111> ori-
entation. If, however, the strain is normalized
by multiplying by the modulus, all three orienta-
tions studied fall on the same line,

Advanced Processes

One failure mode causing severe life limita-
tion in the SSME is fatigue. In conventional car-
bon bearing superalloys, failure initiation is
often associated with carbides. Because most
single crystal superalloys contain no intentionally
added carbon, the crack initiation site is typi-
cally at a pore.

One processing method that has been shown to
produce low porosity castings is high gradient
directional sglidification.” Single crystals
grown at 250 "Cf/cm were found to have about
0.1 percent poros1ty compared to 0.5 percent for
those grown at 50 °C/cm. The latter gradient is
typical of the highest gradients commercially
available. The crystals grown at 250 C/cm demon-
strated about an order of magn1tude improvement
in high cycle fatigue life at 870 °C compared to
crystals grown at 50 °C/cm as shown in Fig. 5.
Currently, there is no commerical production cap-
ability having the higher thermal gradient.

An alternative method of reducing porosity is
the use of hot isostatic pressing (HIP}. It has
been used to reduce the amount and size of porosity
in superalloy castings for over a decade. Figure 6
shows that the application of HIP to an experimen-
tal single crystal superalloy can increase its LCF
life threefold.

The application of HIP to improve fatigue
properties appears to offer the best near term
opportunity for single crystal superalloys. How-
ever the process needs to be adapted for the
particular alloy and component. Earlier it was
mentioned that most single crystal superalloys
have no intentionally added carbon. If carbon
should inadvertently contaminate the component
during HIPing, the incipient melting point of the
alloy would be reduced and it may no longer be
capable of being properly heat treated. Carbides
might also precipitate in the alloy and become
crack initiation sites in service. Figure 7
demonstrates that carbon impurities in the HIP
atmosphere can react with the alloy and cause both
incipient melting and carbide precipitation. In
this experimental HIP run, a carbon-free single
crystal alloy was HIPed in an autoclave which had
a carbon furnace. We believe that the carbon
reacted with residual oxygen in the vessel to
cause a carburizing atmosphere. The added carbon
reduced the incipient melting point to below the
working temperature and some melting of the sample
occurred. Carbides precipitated on cooling from
the HIP temperature. One must carefully contro?l

the atmosphere during the HIP process to avoid
such microstructures.

Carbon and boron are usually intentionally
added to cast polycrystalline superalloys to
strengthen their grain boundaries. Since the
single crystal alloys do not have those elements
to allow higher temperature solution heat treat-
ment, care must be taken to avoid using parts
which inadvertently contain additional grains.
Figure 8 is an example of a turbine blade which .
was thought to have been a single crystal when it
was run for about 2 hr in a rotating rig test at
elevated temperature.4 The blade was in fact
designed to operate several thousand hours at a
temperature greater than that to which this was
exposed, but as can be seen in the figure the
blade cracked. It was later concluded that the
blade had received abusive handling prior to the
solution heat treatment and recrystallized during
the solution heat treatment. It should be noted,
however, that recrystallization may occur during
the casting process or during the HIP process.
Thus, all processes must be carefully controlled
and inspection methods must be in place to assure
that only high quality single crystal blades enter
service.

Rocketdyne is studying single crystal super-
alloys cast by conventional thermal gradient and
commerically available high gradient casting pro-
cesses for application as SSME turbine blades in
contract NAS3-24646. The test materials made by
both casting processes will be subjected to HIP
processing and it is anticipated that a suitable
process will be jidentified for manufacturing
single crystal turbine blades with improved
fatigue resistance. As a part of the overall
SSME program, Rocketdyne is also evaluating the
use of conventionally processed and HIP'ed single
crystals for application in the high pressure
pumps.

Other Considerations:

The SSME turbine blades airfoils operate in
a hydrogen - steam mixture. Cooler regions such
as the dovetail are exposed to essentially pure
hydrogen in the fuel pump. The effects of hydro-
gen on the mechanical properties must therefore
be considered. It is generally accepted that for
nickel-base superalloys, the greatest degradation
in properties is most likely to occur near room
temperature rather than at extreme cryogenic or
elevated temperatures.

To screen candidate alloys room temperature
tension tests of both smooth and notch bars were
performed in 34 MPa hydrogen and helium in the
<100> direction. The tensile strength of several
single crystal superalloys in helium is shown in
Fig. 9. Note that all alloys are notch strength-
ened in He. Figure 10 shows the tensile strength
of the same alloys tested in hydrogen. note that
most alloys have significantly reduced notch
strength compared to smooth bar strength., The
degradation of the notch strength in hydrogen in
summarized in Fig. 11 which shows the ratio of the
notch strength in hydrogen to that in helium. The
data appears to fall into three groups. The best
alloys, AF56 and N-5, have a ratio of 0.84 an are
significantly superior to all others., A second
intermediate group of alloys, PWA 1480, RR2000
and N4, have ratios slightly less than 0.5, (It




should be noted that in a subsequent test series
PWA 1480 had a notch ratio of 0.59). The remain-
ing alloys have a ratio below 0.4. The single
crystal form of the current bill of materials for
the SSME, MAR M-246, has a ratio of 0.18 and does
not significantly differ from the DS form. One
alloy, CMSX-2 was given two different heat treat-
ments. It can be seen that the effect of hydrogen
was virtually unchanged. While there has been a
great difference in the behaviour of the alloys
studied, to date we have been unable to ration-
alize the differences among alloys.

The amount of plastic deformation sustained
by the alloys prior to fracture is lower for spec-
imens tested in hydrogen. The scanning electron
micrographs in Fig. 12 compare secondary cracks on
the surface of N-5 samples tested in He and Hp.

It can be seen that the little plasticity is
apparent in the Hp tested material compared to
the one tested in He.

The detrimental effect of porosity on the
fatigue Tife of single crystal superalloys was cited
earlier. Recent research has also shown that
hydrogen embrittlement is enhanced by the 9resence
of internal voids which trap the hydrogen.

Thus, when the material is exposed to conditions
which might be expected to allow the hydrogen to
escape from the part, the hydrogen may be retained
in the pore and still cause embrittlement.

The anisotropy of the mechanical properties
of single crystal superalloys was briefly discus-
sed earlier. A high degree of anisotropy is also
observed in the effect of hydrogen on a singie
crystal superalloys. Figure 13 summarizes the
degradation of notch tensile strength of PWA 1480
in room temperature hydrogen. The greatest degra-
dation occurs for the <100> direction, while the
least is for the <ll1ll> direction. (The difference
between the 0.59 notch ratio shown here and the
0.49 shown previously is believed to reflect dif-
ferences in the test lots and may not be signifi-
cant.) The reason for the degradation in anisotropy
is not understood at this time. The implications
of this anisotropy on the design of blades are
being evaluated.

Concluding Remarks

Single crystal turbine blades are in commer-
ical and military service in gas turbine powered
aircraft. An obvious extension of those applica-
tions is the use of single crystal materials for

airfoils in the turbines in rocket engines. Cur-
rent technology single crystal alloys offers the
potential for improved 1ife in SSME turbines and
advanced processing offers potential for even
greater improvements. Programs are currently in
progress to evaluated the potential for single
crystal alloys for rocket engines for earth-to-
orbit propulsion systems and it is expected that
these newly developed alloys will soon be flight
qualified for such systems.
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TABLE I. - COMPARISON OF ROCKET ENGINE AND AIRCRAFT ENGINE

TURBINE OPERATIONS

Item Rocket engines Aircraft engines

Fuel Hydrogen or methane | Petroleum distillate
Oxidizer Oxygen Air
Pressure, psi 5 500 psi 400
Speed, rpm 36 000 to 110 000 15 000
Tip speed, ft/sec 1 850 1 850
Horsepower/blade 630 200 to 500
Inlet temperature, °F 1 600 to 2 200 2 600
Heat tEansfer coefficient 54 000 500
Btu/ft® hr- F

Thermal transients 32 000 100
°F/sec

Starts 55 to 700 2 400
Life, hrs 7.5 to 100 8 000

TABLE

I1. - POTENTIAL ADVANCED
BLADE MATERIALS

Monolithic

Directionally solidified MAR-M 246+Hf
Single crystal superalloys
Directionally solidified eutectic alloys
Fiber reinforced superalloys

Rapid solidification superalloys

ceramics
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